Portfolio

Cyberbotics develops custom software solutions for mobile robotics, based on its proprietary Webots technology. We have been working on several industrial, educational and research projects. Our customers include well known universities, large and small companies.

Cyberbotics is also participating in European research projects that need to simulate mobile robots. We are currently working with the Human Brain Project and took part in two IP projects, namely ICEA and RHEA. We have a special interest in developing simulation-based robotics benchmarks.

Get in touch with us at info@cyberbotics.com if you need expertise in robot simulation.

Perrone Robotics is a company that develops software for autonomous vehicles and robotics. They integrated Webots into MAX, their flagship software solution for self-driving cars. MAX is a comprehensive full-stack, modular, real-time capable, customizable, robotics software platform for autonomous (self-driving) vehicles and general purpose robotics. The software enables rapid development of autonomous vehicles and other robotics applications. Perrone Robotics also makes extensive use of Webots simulations as a part of the testing and validation process for MAX. Our collaboration covers numerous areas, centered around routing, cartography, modeling, vehicle and traffic simulations.

The Human Brain Project is a H2020 FET Flagship Project aimed at the research in the fields of neuroscience, computing and brain-related medicine. Cyberbotics is participating in the neurorobotics subproject and contributing with his expertize in simulation, benchmarking, real robots modelization and transfer to real robots. In particular, Cyberbotics is developing a set of benchmarks using calibrated robot models to evaluate the physical and the graphical simulation realism and assess the performance of the brain-driven controller programs. A simple and user-friendly web interface communicating with a Webots instance running on a powerful server machine was developed to provide benchmark simulations as a web service.

The Renault driving platform was developed by Cyberbotics on behalf of the Renault-Nissan group to study human driver reactions to advanced guiding strategies. The system features a real time text-to-speech system providing guidance instructions. The simulation scenario includes a district of a real city that was imported from OpenStreetMap into Webots using to our importer technology. Simulated traffic is generated by the SUMO software which is interfaced to Webots. The immersion of the human driver is maximum: the user interface includes a gaming steering wheel with force feed-back, a gear shift, pedals, motor sound and a virtual reality headset.

The INTRA indoor robot simulator was developed by Cyberbotics on behalf of the INTRA group (EDF, CEA, Areva) to train pilots of the EOLE and EROS remote controlled robots. These robots are designed to operate indoor in case of a nuclear accident. They are able to climb up and down stairs, pass over pipes, open doors, grasp objects, press buttons and rotate valve wheels. The robots have several onboard cameras equipped with lights whose point of view is displayed on control screens at the remote control station. The simulation was designed to be a replica of the real system and can be operated from the same control console as the real system. It permits an initial training of pilots without taking risks of damage on the real hardware.

The NAO for Webots simulation model was developed by Cyberbotics on behalf of Aldebaran robotics to model a NAO humanoid robot in Webots. The model was carefully calibrated against real NAO robots to ensure that simulated robot controllers could smoothly transfer to the real world. An interface with Aldebaran NAOqi Operating System was implemented to connect the simulated model to the Choregraphe graphical programming software as well as the C++ NAOqi API. The simulated NAO model simulates all the servo motors of the real robot, including the fingers ; it also simulates the two on-board cameras, the sonar, the LEDs, the motor position and force-feedback, the IMU (accelerometer and gyro), the touch sensors in the head and force sensors in the feet of the robot.

The RHEA Project was a four-year FP7 European IP project aimed at the design, development, and testing of a new generation of automatic and robotic systems for effective weed management focused on agriculture and forestry. This project was devoted to change the traditional way of proceeding by putting together a fleet of small, safe, reconfigurable, heterogeneous and complementary robots. Cyberbotics contributed to design the simulation of the ground and aerial robots and the graphical user interface for the RHEA base station.

The ICEA Project was a four-year FP6 European IP project aimed at developing robots that integrate cognition, emotions and autonomy (self-maintenance), based on the architecture and physiology of the mammalian brain. Cyberbotics developed 3D mobile robot simulations based on the Webots technology. The simulated bio-inspired robots were equipped with simulated sensors (vision, whiskers and proprioception) and simulated actuators (active whiskers, wheels, head/eyes/rearing movements and grippers).

The Sony Aibo simulator is a simulation model of the Sony Aibo robot. It was developed with Cyberbotics' proprietary technology for Sony Digital Creatures Lab, to design and test behaviors for Aibo. A soccer game system has been implemented, allowing the Aibo to track a colored ball with its on-board color camera. Resulting controllers could be transfered to real Aibo robots.